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Let .# be a normed linear space, and {M,} a sequence of increasing finite
dimensional subspaces, i.e., M, C M,,,, for all n. For any element fe .#, we
obviously have

d(f, M) = d(f, M,.;1), for all n, (89

where d(f, M) is the distance, in the metric induced by the norm, from M, to f.

In a recent paper {2], we discussed the space .# — Cla, b} with the uniform
norm and with M, == [u,,..., u, 4], the linear subspace spanned by {u %%,
where {u;};” is an infinite Tchebychefl system. We established there that the
functions for which inequality (1), for a given »n, is strict for all subintervals of
{a, b] are precisely those that are convex with respect to (u,, iy ,..., 4a_y). The
proof depended crucially on the alternance properties of the best approxirmants
in the uniform norm. Somewhat surprisingly, analogous results are valid when
the norm under consideration is the L2-norm. In fact, as we show in this paper,
generalized convex functions play the same role in the L*norm, for all con-
tinuous weights. Weaker results for the L? case were obtained in [6].

1. INTRODUCTION

Let [a, b] be a fixed interval on the real line, » a positive integer. Denote
by V,la, b] the set of increasing vectors (t,,..., t,) € [a, b]*L, ie., with
a={ty<<t, << - <t, < b and by V,*[a, b] the set of nondecreasing
vectors ¢ [a, b]**1, i.e.. with:

a o [0 R ! L = vee e f

Yo ¥ vt

Tt e iz f

vorrvyiR

i D, (1.1)

where the multiplicities 1 + v, satisfy Y, (I = v,) = n -+ |. For such
T e V,*a, b] we denote »(T) = max v; .
We define similarly V,(a, #) and V,*(a, b) (with a < ¢,, t, < b). Let
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Jo 5--s /5 be real-valued functions on {a, b}, T = (¢,,..., 1,) € V,[a, b]. Denote
by

the determinant | f(£)}} ;. % = {1y ,..., u,; C Cla, b] 1s called a Tchebycheff
system over [a, b] if

Uy sees Uy . N
/ T o eV X
L (r(,,...ﬁrn) 0 forall (fy...t)e Vila b

Properties of such systems can be found in the comprehensive monograph [4].
We shall develop some of the properties which are useful for our purposes.

If foos foeCWa, b} and T == (4 ..... t,) e V., *a, b] 1s with »(T) < v
we denote:

-/;)([U) o f(i‘v“)(v,l)) 11)(,1 H Vn) B (l ! (11 Yo o f f}"'/t) (-,n)
Jo s Sn . . .
® — . .

(10 tn) o B o | :
-/IL(I()) ’ » ‘0 (t ' ”"I\ ([u)
If

U (“0"'"”") ~0  forall 7 = (fg.....tn) e V,*[a,bl,

Toseen By

then % is called an extended Tchebycheff syvstem over [a, b]. An extended
Tchebycheft system # == {u,,..., u,} is called complete if {u,....,u;} is an
extended Tchebycheff system over [a, b] for each j == 0, 1,..., n.

It is shown in [4, p. 379] that every extended complete Tchebycheff system
(ECT-system, for short) over [a b] satisfying the initial conditions: u!/*(a¢) == 0
(J—0, 1.,k —1;k =1 2,..,n)is of the form:

up(1) == woll)

ot
(1) = wy(t) ‘ wy(€)) d€,
(1.2)

Wt 261 L5 BRIt )
ll"(f) - WO(’) J Wl(fl) J “’2(52) J o | ”'u(’:.cn) dgn dél

where w, € C*"9]q, b] and w; > 0 on [a, b]. With no loss of generality we
may assume henceforth that wy == L.
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Note that the classical ECT-system on [0, b]: 1, ¢, t3/2,..., t*/n! corresponds
to wy(t) = - = w,{t) = L.
Given a fixed ECT-system % with the representation (1.2), we define the
differential operators:
f)

Dif(1) = ('\1(7_)") (j = 0,y 1),

Laf=1 Lif = DiD; - Dyf, J=0,1..,n

and their adjoints D;*f = (1/w,(e)df()/dt), L;*f = Dy* - D;*f, j =
0, 1,..., n. Much of the theory of power series expansion can be easily gener-
alized to ECT-systems of this form, e.g.:

ProposiTioN 1.1. (generalized Rolle’s theorem): {f feCla, b] N CB{(qa, b)
and fla) = f(b) =0 then for every j=0,1,..,n—1, there is some
¢; € (a, b) with D;f(c;)) =

ProposiTioN 1.2, (generalized Taylor’s theorem): If fe C™a, b} then
there is some ¢ € {a, b) with

7oy = Y Bl ) o LenllO) g,

(This is proved by applying the generalized Rolle theorem successively to

n-1 n--1
N L. ?L(Cf), fey ﬂ(\) L. 1f(a)
g(x) = f(x) J:Z-A) (@) uy(x) wn(b) f) - Jgﬂ e U;(b)
Lyg(x), etc) .
If fis a “u-polynomial” f = Z}:, a;u; , then this is its Taylor’s expansion,
e, q; = (L fla)/(wia).
For fo,e., [ € CVMa, b), T = (ty,..., 1,) € V,,¥[a, b] with v(T') = v, define:

) ’/n([!)) ' -‘u,, lfn(f()) /(71.{,,0) ‘v, 1/ (rn)"
o (B ) .

z() ERRRE

1 fn(’n ka »1fn(fn)

1t is immediate to verify that

L{M* (“() yersy un) Ur* ('U() wery My )
fo,.‘.,f,g »ff,»”., {n
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For T = (1, ..., t,) € V,.*[a, b] we write f(1;) = 0@ = O..... n) if fO(1,) == 0,
ro=0,...k j= O..,v. -1

If we denote the linear span of # by A(u, ..., u,), then for every function
feC%a, b} and every T == (1 ,.... 1,) € V', *[a, b] with »(T) = v, there is a
unique “polynomial” P == I,(f, T) e Alu,.,..., u,) interpolating f at T, i.c.,
satisfying (P — f)(#;) += 0 (i -=0...., n)—this is P(t) — 3+ , au,t) where

Uy veves U f Ui seeey U . Hy 5oy Uy

. [r* 0 3 =1 s Bl amens B Sk 0 s iy

a; = Uy (f i )/Uu ( )
i AR re'

We need the following two simple observations concerning these generalized
interpolating polynomials:

Prorosition 1.3, If fe CW(a, b) has at t a zero of generalized order v, i.e.,
if Lif(t) =~ 0 forj = —1,..,v—2but L, ;f(t) +~ 0, then passing through t,
[ changes sign if v is odd and preserves sign if v is even.

(Immediate from the generalized Taylor theorem.)
ProrosiTion 1.4, Iffe C¥a. b), T; == (ty/,.... /) e V,, a, b)(j =0,1.2,...)
with v(T)) < vand such that T, —> T, . then I(f, T)) — L[, T)).

Proof. It suffices to prove the case when the 7, differ only m
one coordinate, and we can assume this coordinate to be the first one:

ted = 10, 67 (e L I g < 1Y, we may assume also 1y << Y
so that
Lo Uy weees Uiy s Js Wiy sens Up — [ ¥ Upy onees Uiy s fotiqg vy Uy
u (,,’ 0 {0 u {I‘“ [al ft),
LR PO n R U S n

by the continuity of the u,, and f, and similarly

U ( Uiy geeee Uy ) U (uo u,l" tand this is nonzero since #
fol 1% 1,0 is an ECT-system).

If £ = 0 = = o 1,0 <2 #) ., we may assume that £ == 1, < 1), for all
J == 1. so that:
uylt’) w2y - Lytig(6")

S ) Ly ()

U (ul, s Uy s Ui s un‘) :
Sl ) ) Ly ()
LI ( Uy weons Uy uo(te?) tg(10) =+ Ly ottg(8,°) -+
SR P £o :
o'y Ty "

Ua(ty) tn(ty0) - Loty (8)
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Applying the generalized Taylor theorem and the elementary operations on
determinants, the elements wuy(#y),..., 1,.(#y%), f(#,) in the first rows can be
replaced, respectively, by

k( J)) I Ll(f()( L[lf(r(]j.)5

Lh lun(cn

e,

Lytti(cy)

=2 (1),
wi(co’) i)

where
Cols Oy €7, A€ (87, 1,9,

and by the continuity assumptions the quotient of the determinants tends to

Ly u(1,°) )
SRRy (1) L ott(1%)
”']:([10) 0( 1 ) k-9 O( 1 )

Ly f(1,° ' (
L) ) Lt -

L. Iflrz(_tl ) [ (”{) seees i oy Uiy s ”n\)
i3

w1y - Lyt (1) -

wi{1,") - A L R
Ly _yuo(1,) - Uy ooy U
— Uty - Lyque(6y) - U*( R ”)

Wit o) Licatto(12) 1000 1,0,

L, [
LecattalB®) ) o0y eos Lo () -

0
i) Q.E.D.

A function f defined on (a, b) is called convex with respect to (uy ..., 43 if

U (uo serey Moy ’f) =0,

"ﬂ 3oy tn~1 s rn'

for all {1, ,..., t,) € V,(a. b). We denote the convex cone of functions convex
with respect to (i ,..., 4, 1) by Cluy ..., thy_y).

Notation. We denote by /,,_; the n-dimensional linear space spanned by
(tg 5..s t,_4). We further denote by 72_([o, B] £): [T2 ([a, b} f) = T2 (N)]
the best approximant, in the L2-norm with weight w(x), where w(x) > Qisa
positive continuous function on [a, 2], on [, B8], from 4,_, to £ Tt is well
known that there exists a unique best approximant. We let

Ex ([, B ) = f — Tv:f»-l([fxy Bl f)a: Egﬂ([a: bl f) = Ew——l(f)

be the distance, in the L%norm, from 4,_; to f. Let {P,[o, BIY (with
P la, b] = P,) be the orthonormal system constructed from the u,;’s by the
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Gram-Schmidt process, normalized so that £,(b) > 0. We define a,*([«, 8); /)

a1 BES) — | £ Puls, Bl wie) dt (1.3)

Y

L.e., @,% is the nth Fourier-Stieltjes coeflicient.

2. DIRECT THEOREMS

We consider a fixed interval [a, b}, and establish properties of the best
approximants in L%w; [a, b)) from A,_, to functions of C(uy,..., Upn_),
where w(x) >> 01s a positive continuous weight function. It is well known that
the best approximant, in the L2-norm, from A, to f, is given by

TAHf) = Y a2Py), Q.1

where a;* is the Fourier-Stieltjes coeflicient of f with respect to P;. .
We now recall [7] that P,(x) induces a measure of the cone dual to
C(uy 5., Ut,_1), implying the following.

THEOREM 2.1. [7] Let f be a function of Cluy,..., ti,_1). Then
a,® - 0. (2.2)
If fe Cluy ..., it,_)\An_q then
a,? > 0. (2.3)

The second part of the theorem does not appear explicitly in [7], but is
easily deducible. Noting that

EXf) = Eis(f) i a0 (2.4)

we obtain Theorem 2.2.

THeOREM 2.2.  Let [ be a function of Clu, ..., Uy WAuy . Then

N

Eng(f) < E72271(f) (2 )

Another property which holds for generalized convex functions is expressed
by Theorem 2.3.
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THEOREM 2.3. Let fbe afunction of C(uy ..., un_)\A,_y . Thenf— T:_(f)
has exactly n sign changes, and the last sign is (+).

Proof. Since f — T°_.(f) belongs to C(uy ..., U,_y), it can obviously have

H—

no more than n sign changes. Indeed, otherwise an appropriate choice of
points {t;}* would render the determinant

Uy yeees Uy_q > F — To_i(f)
v ( by seves b1 » In ) (2.6)
negative.
On the other hand, in view of (2.1) and (1.3), we have

b
f [f— T2 () Pwdx =0, =0 1..,n—1
Hence,

b
J [f— T2 ()} uwdx =0, i=0,1,..,n—1. (2.7)

Relation (2.7) implies, as in [4, p. 410, that f — T>_,(f) possesses at least
sign changes. Thus, f — T2_,(f) has exactly n sign changes. Returning now
to the determinant (2.6), we conclude that the last sign is (-). Q.E.D.

For generalized absolutely monotone functions (see [1 and 5]) we easily
derive from Theorems 2.1 and 2.2 the following theorem.

THEOREM 2.4. Let f be a generalized absolutely monotone function on (a, b),
which does not coincide with a u-polynomial. Then

. a2 >0, Sfor all k,
2. \EX(f)ys is a strictly decreasing sequence.

3. CONVERSE THEOREMS

There exists no direct converse to the theorems of this section. This will be
established (as in [2]) by general category arguments.

LemMmA 3.1, Let r << s be any real numbers, and n any positive integer. Let

B2, 8) = 11, Enallr, s1 ) = ES([r s )
Then
A 2r, ) is closed and has no interior.

Proof. Let f, be an arbitrary function of #,%(r, 5), and let € be given.
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Since E2_\([r. s]: fo) = E,X[r, s}; f,) and the best L2-approximant is unique,
we conclude that
(/ = Tu:([ra ‘SJ-/()) € /111 1-

Consider now the function

. € u,
o i _ LN
& ./(l i 2 ‘ u, “ ,
Clearly, g — /o, <€ and
et . B L€ UL, Ry
T, ([” 3]7 g) = q - 2 :‘ M"‘j = /111 \,111% 1
Hence, g ¢ #,2(r, s). Q.E.D.

THEOREM 3.2. Let A be the set of functions such that E.X[r,s];f) is a
strictly decreasing sequence for all n and all v, s rational in [a, b]. Then A° is
of the first category.

Proof. We need only observe that

A= U 2%
n—1 r,s rational
and use the lemma.

A well known result (see [3], p. 260) implies that D == {f: fe Cla, b], the
right-hand derivative is finite for some x = [0, 1]}, is of the first category in
C[0, 1]. Since we know (see [4], p. 385) that each fe Cluy ..., u, 3), n .2 2
possesses a right hand derivative, it follows that C(u, ..., 1, (). n ;= 2 is of
the first category, hence much smaller than A.

We shall now prove that in spite of the foregoing analysis, properties of the
type considered in Section 2 can be used to provide a characterization of
generalized convexity cones. We note that if » has # continuous derivatives,
the theorems are quite easy. However, the standard limit processes are of
no avail, necessitating the following delicate argument, which involves
coalescing points. We remark that the approach here is quite different from
the one encountered in the uniform norm case [2], where the preservation of
the separation of extremal points in the limiting process was decisive.

Let {vy,..., 05,7} be the ECT-system on [a, b] generated by {w, ...,
Wyq sy 1, Wy q o, Wit (See [4] p. 528).

LemMma 3.3, Let g be a function with n continuous derivatives such that
g ¢ C(vg ,..., Uy 1). Then there exist a v-polynomial Q € A(vy ..., Uy,_y) and
a set of points T € V¥, _(a, b) of the form

ty =10 = =l <y =ty = =l (3.1)
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such that
(g — O)t) = 0, P01, 20— 1,

(3.2)
(1" — Q) <0ty <

Proof. Since g ¢ C(vg ,..., Vgn1), there exist (fy ..., ly,_1) € Von_y(a, b) and
T€(t,4, t,) such that

U ( Uy seus Va1, & ) < 0. (3.3)

f{) ERRRS] tn—l > Ty ’rz 3reey th—l

Let Q = T(g, T)e Ary ..., Van_1)- ,Since (g —O)1) L 0,i=0,1..,2n—1
and
U( Ug sy Uan_q 5 Q ) = Os

T() PAREE] rn > T ’n, PR} t2n—1

we deduce that (—1)"(g — Q)(=) < O.
Replace ¢,_, and ¢, , if necessary, by the nearest zeros (from the left and
from the right, respectively) to , so that (—1)*(g — Q)t) < O in (f,_4, t,).
If the order, v, of the zero of g — Q at r, is at least n, we replace
thi1 »eees Tan_1 DY 1, and obtain

Ly <ty << v Sty = by = = Ly
(g—O)Nt) =0  (i=0,1,..2n—1), (3.4)
(g —0)r) <0 (t,_1 <21 << t,).

If v < n we replace 1,4 ,..., 1,,, by ¢, . In this case ¢, is an isolated zero
of ¢ — Q (immediate from Rolle’s theorem) and we take as ¢,.,.; the next
zero of g — Q, again with its multiplicity, etc. We get thus what we call an
“admissible” vector 7' == (£, , tyiq roor fany) € VX (7, b), i.e., such that
T = (Fones tuts Fns Pnpaneos onq) and Q -= I(g, T) satisfy (—1)(g — Q) < 0
on (f,.,t,) and such that all zeros of (g — Q) in (7, ,, ;) are properly
counted (with their multiplicities).

We order the set of admissible vectors by: 7, <2 T, if T, precedes T, in the
lexicographic order and #2, ; < i}, , . If ¢, = f,,, = - = Fy, 4, then T is
obviously maximal with respect to this order. The fact that the converse also
holds will follow immediately from the following observation: suppose
T = (f, yoouy fay_y) is an admissible vector with #,,; < f,.;,, for some

0 < j =< n — 2, then there is an admissible 71 = (7,1,..., £ ) with /1 = £,
for i <nm4j, it <t, for i >n-j and i,,; <i.,; <i,.,,. In fact,
take any n € (£,.; , {nys41) and let Q' interpolate f at

a

Tn = (tt] derey ’n»l » ,n EASRE] tnﬁ—j-l > 7 tn+j+1 30y 12n71)7
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Ql - Q i 117(g - Q’ Tn)‘

Since sgn(g — Q)n) — (- 1y 7, sgn (g — Q, T,) is(~1)" on (i,..%,),
so that for

ZE(,n 1> n) ( —l)“(g Q )(f) —_ (471)“( g — Q) ) AT 1)” 1 - Qﬂ [n)
-~ 1)"g — OXr) <0

Let #,1,..., £}, | be the proper counting of the zeros of ¢ — Q' after 7, ;.
We want to show now the existence of a maximal admissible 7: Let
A = {T,; xe A} be the set of all admissible 7', = (t,%..., 15, ,) satisfying
T, =T = (1, ... ts,_1) (our first admissible vector). Let 7,9 - Sup,., 7, If
1.’ = t,0 for some x€ 4 then by the above observation we must have
tr e t%, = =15, (otherwise, by repeated application of the procedure,
if nccessary, we get an admissible 7 (B € 4) with #,% = ¢, If 1,9 =~ 1,2 for
all « € 4, take a sequence Tqm with t$= increasing to ¢,°. By passing to sub-
sequences, if necessary, we may assume also that the limits 7% == lim,, . 157
exist for j == n - 1., 2n =1, ie. T, > Ty == (1,15, ). By Propo-
sition 1.4 1,4g. T, )~ 1,(g, Ty). By the observation above |/,(g, T, )| is
increasing on (7, ;, %) for m " k, so that 7,° -1, for some xe 4. A
similar treatment of the left end-points completes the proof of the lemma.

LemMA 3.4, Let fe Cla, b] be such thar f& Cluy...., u,_ ). Then there
exists a subinterval [, B] C [a, b] such that

8 -

| f() P Blt) e < 0 (3.5)
where P, [w, B] is the n-th orthonormal u-polynomial on [, B] with respect to
the weight function 1, and with positive highest coefficient which we denote by
b, .

Proof. Let (vy...., Usy,_;) be the ECT-system generated by {1, w,_; ... w, .
I, wy ey wn,l',, i.e., corresponding to the differential operator D, ., -
DyDyDy* - Dj’f,,l. Let ¢ be any solution of Dy* -~ D¥ ¢ -~ f. Since

fe Cu,,..., i,.1) it follows that g ¢ C(r, ... s, 4). By Lemma 3.3 there
exists a set Te Vo a, by with ity - tp = = =t t, T R
tyn_y = B such that QO = I (g, T) satisfies

(—D*(g — OXty <2 0. for te(xf3). (3.6)

Let R == D,* --- D¥ Q. Since L, (R -0, it follows that R is a function of
A,_, . Since P [, B] is orthogonal to A, , . we have

[" Dy DELOP v Bldr | RP,[x, Bldi - 0.

tx bR 3
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Hence, integrating repeatedly by parts, we bave
5 . ~
| S o, Bldt = | Dy e DIy gP o, Bl

~8 ) S
o ’ Dy Dyy(g — Q) P L, Bl dt

y Lalow 1

Wo I\

= D DI(g - 0

o3 -
- l Dy, B] Dlx D:;]{.g - ) dt

e D DE (g — O) DPx Bl P

Wy

x

=] - . .
7WJ‘ DlD()P‘n[D"v B] sz D:z‘vvl(o - Q) dt

]

(—1)"{g — O)dr

= e b, ’
The integrated terms vanish by (3.2). Relation (3.6} therefore implies that
(3.5) holds.

Lemma 3.5, Let fe Cla, bl be such that f & C(ug ..., Un_), and let w(t) > 0
be a continuous function. Then there exists a subinterval {x, 8] << [a, b] such
that

(Bf(‘f) Pn[a: B] W(f) dt <2 0.

x

Proof. We introduce the new variable ) defined by

J

and note that y is a strictly increasing, continuously differentiable function
of ¢, so that its inverse exists and possesses similar properties.

Let now fIH(¥)] = h(3), w,[t{(¥)] = z{¥)o Pule, BI(6) = Rylox, Bl(y). It is
casy to see that 4 ¢ C(zy,..., z,,_4), and that R, [x, 8](y) is equal to the nth
orthonormal z-polynomial (with respect to the weight function 1) on the
interval [ y(a), ¥(8)]

Since h ¢ C(zy,..., z,-,) there exists, by Lemma 3.4 an interval |4, B] in
[ »(a), y(b)] such that,

t
H’(S) ds == y(f) =y

4

LB h(y) R[y=1(A4), y By} dy < 0.
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Making the inverse change of variables, we obtain

SRTHB)
| L B e di o

N A

Q.E.D.

Tueorem 3.6, Let fe Cla, b]. If a,*([«, BLif) == 0 for all [, B]C [a, b],
then f'e Cluy vy )\ Ay_y for all [, B].

Proof. Clearly, fcannot coincide with an element of /1, _; on any interval,
since this would imply a,*([«, B}; f) -= O for the interval under consideration.
Furthermore, if ¢ C(uy, ,..., it,_y), then by Lemma 3.5 there must exist an
interval for which a,([~, B];f) < 0, again violating the hypothesis in our
Theorem. Q.E.D.

THEOREM 3.7. Let f'e Cla, b). If
Ll Bl f) = B[ Bl ), (3.7)

Jor all [x, B1C [a, b], then either [ or —f belong 10 Cluy ..., y_\A,_4 for all
[o, B.

Proof. Since (3.7) is equivalent to a,*([« Bl:f) -+ 0, f cannot belong
to A, . Since a,X([~, B]: f) is a continuous function of « and B and does not
vanish, it must be of constant sign. The theorem follows now by an appeal
to Theorem 3.6.

TueoreMm 3.8. Let fe Cla, b. If, for all [«, B] C [a, ), J — T2 ([~ Bl; /)
has exactly n sign changes on [x, 8] such thar the last sign is (). then
e Cluy ..., . Wy for all [x, B].

Proof. Clearly f cannot coincide with a function of A, on any interval.
Assume now that f'¢ C(u, ..., i1, 4). Then there exists, by Lemma 3.5, an
interval [~ , 5,] such that

Jig

’ JP g s Bol wdx < 0.

Yo
In view of the orthogonality conditions, we thus have

A3y

' L — Thoallo s Boli /)] Pallg » Bol) wdx =2 0. (3.8)

Ty
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However, the pattern of sign changes taken together with the “moment
conditions” (2.7) imply that f — T2 |([«, B}; f) belongs to the dual cone
C*(tty »..., Uy_q) (see [4], p. 409) on [« , B,]. Since P, [«, . By] evidently belongs
to Clug ..., U,_y), (3.8) is impossible.

CONCLUSION

Let /'belong to Cla, b]. Then the following statements are equivalent:

(@) FEX ([o, BL:f) = EX[o, Bl f). forall [x, B}, a <2« < B =5 b.
(b} Either f or —f belongs to C(uy ,..., u,_ 1A, for all such [~, B].

(c) Either a,X([a, 8]: f) > 0 for all such [«, B}, or a,%([x, 8]: /) << O
for all such [w, B].

(dy f— TZ \(la, Bl;f) has exactly n sign changes on [«, 8] for all such
[ Bl
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