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Let Jt be a normed linear space, and {Mn}f' a sequence of increasing finite
dimensional subspaces, i.e., 1\.1,. C i\.1,. ,." for all II. For any element fE jf, we
obviously have

for all II, (I)

where d(j, M k ) is the distance, in the metric induced by the norm, from Mf, to f
In a recent paper [2], we discussed the space .If ~ C[a, h] with the uniform

norm and with M,. '" [u" ,... , u,,_,I, the linear subspace spanned by {u i J7.-"
where {Ui:~D is an infinite TchebychetT system. We established there that the
functions for which inequality (I), for a given II, is strict for all subintervals of
[a, hI are precisely those that are convex with respect to (u", u, , ... , un-,), The
proof depended crucially on the alternance properties of the best approxirnants
in the uniform norm. Somewhat surprisingly, analogous results are valid when
the norm under consideration is the V-norm. In fact, as we show in this paper,
generalized convex functions play the same role in the L2-norm, for all con­
tinuous weights. Weaker results for the L' case were obtained in [61.

I. INTRODUCTION

Let [a, b] be a fixed interval on the real line, n a positive integer. Denote
by Vn[a, b] the set of increasing vectors (to ,... , t,,) E [a, bJllc\ i.e., with
a '::..:; to < t1 < ... < tn b, and by Vn*[a, b] the set of nondecreasing
vectors EO [a, bln+l, i.e .. with:

a

Ii, (1.1 )

where the multiplicities 1 + 1'; satisfy L~~o (I -i- 1',)' n -;- l. For such
TEO Vn*[a, b] we denote I'(T) = max Vi'

We define similarly V,,(a, b) and Vn*(a, b) (with a < to, t" < b). Let
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j;) ,...In be real-valued functions on [a, b], T (to " .. , Tn) E Vn[a, b]. Denote
by

the determinant if;(tJi;',j'~O.ft ~~ {uo ,... , u,,! c qa, b] is called a Tchebycheff
system over [a, b] if

U ,lIo , , lin)'
\ to , , tn

o for all (to .... , t,,) t= Vn[a, b].

Properties of such systems can be found in the comprehensive monograph [4].
We shall develop some of the properties which are useful for our purposes.

If fa ,...J" E C(v)[a, b] and T (to ..... til) E V,,*[a, b] is with veT) 1'.

we denote:

j ' (l) f'("O)(l) ,(V,.J(t )
. no'" - 11 0···.1 n .)i

If

U* ,/~ ,... ,./;,) ~~
\to ,"" tn

I ,( ,(" i
, 0 (o) ., . .t 0 1/ (to) , f' (" ) .(" ) )/O(tl' " ) .. '. (J" (tl ) ... fi' (t

, V(J , f'O • 0 .)/

U* (lIO,"', lin) 0
to ,... , tn

for all T= (to , .... tn ) E V,,*[a, b],

then ~11 is called an extended Tchebychejf system over [a, b]. An extended
Tchebycheff system '1/ ,~ {uo , ... , un} is called complete if {uo "'" Uj} is an
extended Tchebycheff system over [a, b] for eachj c= 0, 1, ... , II.

lt is shown in [4, p. 379] that every extended complete TchebychetT system
(ECT-system, for short) over [a, b] satisfying the initial conditions: u~J'(a) = 0
(j ~. 0, I, ... , k - 1; k~ I, 2, ... , II) is of the form:

,.(

1I1(t) = lI'o(t) I lI'l(~l) d~l
'((

( 1.2)

Un(t)
,.t .. ';l ..

lI'o(r) / lI'l(~l) I WM2) I
., If "' a "',.,

where Wi E Cln-il[a, b] and Wi 0 on [a, b]. With no loss of generality we
may assume henceforth that 1\'0 ,= I.
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Note that the classical ECT-system on [0, b]: I, t, t 2/2, ... , tn/n! corresponds
to wo(t) =... wit) = 1.

Given a fixed ECT-system:Jlt with the representation (1.2), we define the
differential operators:

d ( f(t) -.
D;/(t) = dt Wj(tY) (j

Ld = j; Ljf DjDj1 '" Do.!;

0, ... ,11).

j == 0, I, ... , II

and their adjoints Dj*f = (l/w;(t))(df(t)/dt), Lj*f = Do* ... Dj*f, j =

0, 1, ... ,11. Much of the theory of power series expansion can be easilly gener­
alized to ECT-systems of this form, e.g.:

PROPOSITION 1.1. (generalized Rolle's theorem): !ffE C[a, b] () C{l)(a, b)
and f(a) = feb) = 0 then, for every j == 0, 1, ... , n - J, there is some
Cj E (a, b) with DJ(cJ = 0.

PROPOSITION 1.2. (generalized Taylor's theorem): If f E crn)[a, b] then
there is some C E (a, b) with

tel) n~l Lj_d(a) ( L,,_d(c)
• J = L., - •. _-~ Ui b) -;- --,--un(b).

Jdl 1\ ;(a) Hn(C)

(This is proved by applying the generalized Rolle theorem successively to

Log(x), etc.)
Iff is a "u-poIynomial" f = L.::~ Gillj • then this is its Taylor's expansion,

i.e., aj= (Lj_d(a))/(w/a)).
Forfo ,...,!" E C(')[a, b], T (to ,... , til) E Vn*[a, b] with veT) 1'. define:

1t is immediate to verify that

Un * fUo , , Un)
\ to , t"

U* C/o , lin).
,to.· t"
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For T (to ,... , tn) E Vn*[a, b] we write f(1 J ~:. °(i 0..... n) ifj(j)(tr) 0,
f= 0, .... k:.i 0, ... , PI' 1.

If we denote the linear span of·ll by A(ull ,... , un), then for every function
fECIF)[a,b] and every 'I' (to, .... t,,) Vn*[a,b] with v(T) v, there is a
unique "polynomial" P c= I"U: T) E A(uo ,... , lIn) interpolating f at T, i.e.,
satisfying (P-f)(tJ T 0 (i = 0.... , n)~this is P(t) = I:;'o a;uJt) where

al
u (UO....• U'-l ,./: Ultl •... , U")/U,,* (UO,...• lin).

to .... , t" . \ to ... " t Ii

We need the following two simple observations concerning these generalized
interpolating polynomials:

PROPOSITIOl\i 1.3. IffE C(rl(a, b) has at t a zero ojgeneralized order t·, i.e.,
if Ld(t) 0 for j = ~ 1,... , v ~ 2 but Lv-d(l) 0, then passing through t,
f changes sign if v is odd and preserves sign if t' is evcn.

(Immediate from the generalized Taylor theorem.)

PROPOSITIOl\i 104. IffE CI")(a, b), Ti (toJ, ...Jn')r= Vn*(a. b)(j =0, 1.2,... )
with v(Ti) v and such thaI T j ->- To. then I"Cf, T i ) -+ I"U; ~)).

Proof It suifices to prove the case when the Ij differ only in
one coordinate. and we can assume this coordinate to be the first one:
toJ ---+ toO, t,' t,lI (i I, .... n). ]1' toll < tlO. we may assume also to! < tIll

so that

J "e * ill" ..... 11"'1 '. ,1I'-J .... , Un) ---+ U * (II" ..... Ui-l ,j. II, ,1 , .. ·.t";".)
U \foi. tlll •.... InO u ,t()O~ tIll ..... n

by the continuity of the u/.• and f; and similarly

(and this is nonzero since 11

is an ECT-system).

If to" =. f J "

j I, so that:
f "/, t;,'+l' we may assume that toO

u * (llo ..... 11,-1 ,./; U,+ I ..... lin.)
I! toJ. flO •••. , tnO

-----------_._-~---_.-~-

u* (' Uo , lin )
.f,/. tl" t"O

lI,,(tOI) Un(t1
1l) ... LIi.2Un(tlO) ...

I Uo(toJ) UO(tlO) ":' 1:~2uo(tll)01

!. . . I
lun(toJ) Un(tlO) ... L/,·.211n(tlU) ... :
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Applying the generalized Taylor theorem and the elementary operations on
determinants, the elements uo(toi),.,., Un(toi),j(toi) in the first rows can be
replaced, respectively, by

where

and by the continuity assumptions the quotient of the determinants tends to

t/(t O) ... [ tt(tO) ...n 1 !;;--2 'n 1

U (t 0) ,.. L u (t 0) ...n I 1:-2 0 1

U * (uo ,... , U; I ,f; U , ,1 ' Un\
n ,I., ... ,

U* (Uo , , Un)
tOO, , t n

O

Q.E.D.

A function!defined on (a, b) is called convex with respect to (Uo " •. , Un-I) if

for all (to " .. , t n) E Vn(a, b). We denote the convex cone of functions convex
with respect to (uo ,... , Un I) by C(uo ,.... Un-I)'

Notation. We denote by A n - 1 the II-dimensional linear space spanned by
(uo ...., Un-I)' We further denote by T~_I([(X, 13] f); [Ti:_I([a. b]; f) == T,;-I(f)]
the best approximant, in the U-norm with weight w(x), where w(x) :> 0 is a
positive continuous function on [a, b], on [0:,13], from A n - I to f It is well
known that there exists a unique best approximant. We let

be the distance, in the U-norm, from A n_ I to f Let {Pn [lX,f3]};;' (with
P,.[a, b]= Pn ) be the orthonormal system constructed from the u/s by the
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Gram-Schmidt process, normalized so that Pn(b) O. We define an2([a, f3];f)
[an2([a, b];f) == an2(f)] by

.;JI f(t) P//[l):, j3](t) lr(t) dt
.il).

( 1.3)

i.e., an
2 is the nth Fourier-Stieltjes coetllcient.

2. DIRECT THEOREMS

We consider a fixed interval [a, b), and establish properties of the best
approximants in L2(w; [a, b]) from A n- 1 to functions of CCuu , ... , un - 1),

where w(x) 0 is a positive continuous weight function. It is well known that
the best approximant, in the V-norm, from An to f, is given by

n

T//2(f) = I al,2 P!(x), (2.1)
I,~U

where a7,2 is the Fourier-Stieltjes coefficient off with respect to PI...
We now recall [7] that Pr/(x) induces a measure of the cone dual to

CCuu , ... , un - 1), implying the following.

THEOREM 2.1. [7] Let f be a fimction of C(uu ,... , UTI .1)' Then

lffE C(uu '00" 1I//-1)\An - 1 then

.,
an'" o. (2.2)

(2.3)

The second part of the theorem does not appear explicitly 111 [7], but is
easily deducible. Noting that

itT U n - O. (2.4)

we obtain Theorem 2.2.

THEOREM 2.2. Letf be a{unction of C(un '00" un - 1 1Vl// 1 . Then

E/lZCn (2.5)

Another property which holds for generalized convex functions is expressed
by Theorem 2.3.
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THEOREM 2.3. Letfbe afunction ofquo ,... , un-l)\A n- 1 . Thenf -- T/~-l(f)

has exactly n sign changes, and the last sign is (+).

Proof Since f - T;'-l(f) belongs to C(uo ,... , url-l), it can obviollsly have
no more than n sign changes. Indeed, otherwise an appropriate choice of
points {t;}~' would render the determinant

u (Uo ,... , Un-1,f -- T;'-l(f))
to ,... , tn-I, tn

negative.
On the other hand, in view of (2.1) and (1.3), we have

(2.6)

Hence,

r[f - T;'-l(f)] PiW dx = 0,
a

• b

J [f -- T;'-l(f)] u;w dx = 0,
a

i = 0, 1, ... , n - 1.

i = 0, I, ...,n- I. (2.7)

Relation (2.7) implies, as in [4, p. 410], that f - T,7-lf) possesses at least n
sign changes. Thus, f - T;'.l(f) has exactly n sign changes. Returning now
to the determinant (2.6), we conclude that the last sign is ( +). Q.E.D.

For generalized absolutely monotone functions (see [I and 5]) we easily
derive from Theorems 2.1 and 2.2 the following theorem.

THEOREM 2.4. Let fbe a generalized absolutely monotone/unction on (a, b),
which does not coincide with a u-polynomial. Then

1. ak
2 > 0,

2. {En2(f)}~,

for all le,
is a strictly decreasing sequel/ce.

3. CONVERSE THEOREMS

There exists no direct converse to the theorems of this section. This will be
established (as in [2]) by general category arguments.

LEMMA 3.1. Let r .::::: s be any real numbers, and n any positive integer. Let

Then
Yl,,2(r, s) is closed and has no interior.

Proof Letfo be an arbitrary function of Yln2(r, s), and let E be given.
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Since £;'_1([1', s]:/o) = £,,2([1', s];};)) and the best V-approximant is unique,
we conclude that

Consider now the function

Clearly, g -- j~ iT < E, and

Hence, g f JIJ,,2(r, s).

E lin

2 lin Ie

Q.E.D.

THEOREM 3.2. Let A be the set o!,jimctions sllch that £n2([r, s];f) is a
strictly decreasing sequence for all n and all r. s rational in [a, h]. Then Ac is
of the first category.

Proof We need only observe that

Ac == U U
1/--,-1 r,," rational

and use the lemma.
A weU known result (see [3], p. 260) implies that D= {fJE C(a, b], the

right-hand derivative is finite for some x E [0, IJ}, is of the first category in
C[O, I]. Since we know (see [4], p. 385) that each fE quo .... , Un 1), n 2
possesses a right hand derivative, it follows that C(uo .... , lIlI-I)' n 2 is of
the first category, hence much smaller than A.

We shall now prove that in spite of the foregoing analysis, properties of the
type considered in Section 2 can be used to provide a characterization of
generalized convexity cones. We note that if n has n continuous derivatives,
the theorems are quite easy. However, the standard limit processes are of
no avail, necessitating the following delicate argument, which involves
coalescing points. We remark that the approach here is quite different from
the one encountered in the uniform norm case [2], where the preservation of
the separation of extremal points in the limiting process was decisive.

Let {vo ,... , /'2n-I} be the ECT-system on [a, b] generated by {wo .... ,
Wf/I , ... , I, W n - 1 , ... , 11\}. (See [4] p. 528).

LEMMA 3.3. Let g be a fimction with n continuous derivatives such that
g l' C(vo ,... , 1'2n 1)' Then there exist a v-polynomial Q E A(vo , ... , 1'2n-I) and
a set ofpoints TE V~}_I(a, b) o/theform

tn -- 1 < tn tnn = ... -= t2n - 1 , (3.])
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l'(g - Q)(ti) = 0,

(-I)"(g -- Q)(t) <: 0,

i = 0, I, ... , 2J1 - 1,
(3.2)

Proof Since g rF C(uo , ... , V2n- 1), there exist (to , ... , t2n- 1) E V2n- 1(a, b) and
T E (tn-I, tn) such that

u i Uo , ... , l'2n-1 , g ) <~ 0
\to , ... , f.n- 1 , T, In , .. " f 2n- 1 -- •

(3.3)

Let Q = T(g, T) E A(vo ,... , U2n- 1). Since (g - Q)(t;) !:~ 0, i = 0, I, .... , 2n - 1
and

u ( l'o , ... , ['2n-l , Q ) = 0
to ,... , tn , T, tn ,... , t2n- 1 '

we deduce that ( - t )n(g - Q)(T) <: O.
Replace tn- 1 and tn, if necessary, by the nearest zeros (from the left and

from the right, respectively) to T, so that (_l)n(g - Q)(t) <: 0 in (In-l , tn).
If the order, v, of the zero of g- Q at t n is at least n, we replace

t"ll •... , t2n- 1 by tn and obtain

(g - Q)(tJ ;!, 0

(g - Q)(t) < 0

(i = 0, 1, ... ,2/1 - I).

(111-1 t < tn).

(3.4)

If v < 11 we replace tn+1 , .•• , t n+v by tn' In this case tn is an isolated zero
of g - Q (immediate from Rolle's theorem) and we take as t n +v+1 the next
zero of g - Q, again with its multiplicity, etc. We get thus what we call an
"admissible" vector t' == (in, in+l ,... , i2n --1) E V,;_l(T, b), i.e .. such that
T .=~ (to, ... , tn-I' im in+l•... , i2n- 1) and Q J,,(g, t) satisfy (--I )"( g - Q) < 0
on (lnl , in) and such that all zeros of (g -- Q) in (T. i2n - 1) are properly
counted (with their multiplicities).

We order the set of admissible vectors by: 1'1 1'2 if 1'1 precedes 1'2 in the
lexicographic order and iin_l ~ ii,,-1 . If i" = in+1 == .. , i2n1 , then t'is
obviously maximal with respect to this order. The fact that the converse also
holds will follow immediately from the following observation: suppose
t' c-, (in "'0' i2n- 1) is an admissible vector with inti < inTi+! for some
o j 11 - 2, then there is an admissible 1'1 (in \ ... , iL_l) with i,l = 1,
for i <:: 11 + j. i/ ~ t i for i :> J1 + j, and inu < i;'+i < t II 'ill . In fact,
take any 1) E (in+i' in+H-l) and let Q1 interpolatefat
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QI _c Q /,,(g . Q, T,,).

Since sgn(g - Q)('i))- ( I )Ii!, sgn /I)( g- Q, Te ) is ( I)" on (I" I' iii),

so that for

t E (In-I, in): (-1)1i( g- Q1)(t) ~ (--I )Ii( g -- Q)(I) -- (-l)n /,(g Q, 7~,)

< ( 1)1i( g Q)(I) < O.

Let (,/, ... , iL-1 bc the proper counting of the zeros of g- QI after t n l'
We want to show now the existence of a maximal admissible t: Let

A {T,; (X E A} be the set of all admissible 't c (In""', t~n -1) satisfying
1',y t (tn ,.. " t~n--1) (our first admissible vector). Let tnll 'SUPOEA tn". If
tn

ll
.c= tn' for some ex E A then by thc above observation we must have

t,I' c t~l t~n_1 (otherwise, by repcatcd application of the procedure,
if nccessary, we get an admissible 'l~J (f3 E A) with t,/J tn". If t n

O tn" for
all (X E A, take a sequence i o with t~m increasing to tnll • By passing to sub­
sequences, if necessary, we ~';iY assume also that the limits t/ limn,~X) tjm
exist for j ~"'Il 1, ... ,2n-l, i.c., t, ~ '1'0 ~= (Ino, ... , t'~n I)' By Propo­
sition ].4' /u( g, Ty ). "~ /,,( g, To)· By th~ observation abo~e i 1,,( fj, T,)I is
increasing on (In ':, !~k) for til k, so that rno tn" for some' tX EA. A
similar treatment of thc left end-points completes the proof of the lemma.

LEMMA 3.4. Let fE C[a, b] be such that !g. C(uo ,... , un I)' Theil there
exists a subinterval [IX, f3] C [a, b] such that

./3

I f (I) L'n[iX. f3](t) ilt
01 il

o (3.5)

where ]3n[O:, ,8] is the n-th orthononnalu-polynomial all [I.X, ,8] with respect ro
the weight function I, and with positive highest coefficient which we denote by

bn'

Proof Let (l'n .... , V~'H) be the ECT-system gencrated by {I, Yl'nl ,.... WI'
], 11'1 ,... , wn-1L i.e.. corresponding to the differential operator Dn1 '"
D1 DoDo* D~__1' Let g be any solution of Do*'" D~_lg f Since
jf. C(uo , un 1) it follows that g rf C(l'o .... V~n 1)' By Lemma 3.3 therc
existsasetTEV2;'_1(a,b)withto t l t"l x.t,,'=tnil

t~n-l = ,8 such that Q c•• f ,( g, T) satisfies

(_I)n(g -- Ql(l) O. for t c, (iX. (3). (3.6)

Let R == Do* ... D~_lQ. Since Ln'lR O. it follows that R is a function of
An_I' Since Pn[c:x, f3] is orthogonal to "1 nl , we have

rDo * ... D: 1Ql',,[x, f3] ilt
" ..1'

rRI)"Jx,,8] cit.. :"'\:

O.
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Hence, integrating repeatedly by parts, we have

./3 ./3

j ./l),,[a, f3] dt = J Do* ... D:~-l gIl" [lX, f3J dr
a a

.,1
= j Do'''' D;;_l(g - Q) PrJx, J3] ilr. ,

--..D * .D* (. Q) 1\[('(, f3] 1°-... 1 .. , n·-I g.... I
. 1\'0 ~

.8- I Dol),,[ex, f3] DI * ... D:-1(g -- Q) dt
~, Ci

,.13

= ....".' bn I ( l)ll(g Q) dr ..,

125

The integrated terms vanish by (3.2). Relation (3.6) therefore implies that
(3.5) holds.

LEMMA 3.5. LetfE C[a, b] be such thatf¢: quo ,... , Un-I), and let wet) 0
be a continuous function. Then rhere exists a subinterval (x, {3] < [a, b1such
that

( f(t) P,,[a, f3J w(t) cit <: O.
".,1'.

Proof We introduce the new variable y defined by

.t

J 1I'(s) cis yet) y
"

and note that y is a strictly increasing, continuously differentiable function
of t, so that its inverse exists and possesses similar properties.

Let now f[t(y)] == hey), ui[r(y)] Zi(Y)O Pn[cx, f3](t) = Rn[a, f3J(y). It is
easy to see that h ¢: C(zo ,..., Z,, __1), and that Rn[a, 13]( y) is equal to the nth
orthonormal z-polynomial (with respect to the weight function 1) on the
interval [yea), y(j3)].

Since h ¢: qzo ,... , Zn-l) there exists, by Lemma 3.4 an interval [A, BJ in
[y(a), y(b)J such that,

rh(y) Rn[y-l(A), y-I(B)J(y) cly <: O.
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Making the inverse change of variables, we obtain

.!i-lIB)

J"liAi f(t) P,,[yl(A), Y 1(B)](t) W(t) dl o.

Q.E.D.

THEOREM 3.6. Let fcc C[a, b]. If ant([iX, j3];]) 0 for all [ex, (-j] C [a, b],

then fE C(uu ,... , u,,_1)\A n_ 1for all roc, 13].

Proof ClearlY,fcannot coincide with an element of /1"-1 on any interval,
since this would imply a/,2([,y, 13];]) ..~ °for the interval under consideration.
Furthermore, iff rt quo ,... , U ,,-1), then by Lemma 3.5 there must exist an
interval for which all ([,y, j3];f) <:: 0, again violating the hypothesis in our
Theorem. Q.E.D.

THEOREM 3.7. LetfE C[a, b]. If

(3.7)

for all [:x, 13] C [a, b], then either/or -fbelong (0 C(uo , ... , u,,_1)\An_1for all

[:x, 13].

Proof Since (3.7) is equivalent to ant([ex, j3];f) 0, f cannot belong
to A,l-} . Since al/t([,x, 13];]) is a continuous function of ,Y and f3 and does not
vanish, it must be of constant sign. The theorem follows now by an appeal
to Theorem 3.6.

THEOREM 3.8. LetfE C[a, b]. 1/; for all [l~, J:!] C [a, b],f - T'~_1([ex, J:!]; j)
has exactly n sigll changes 011 [x, j3] such thar the last sign is (+), then
fE C(uo , ... , lIl/l)\.!l n _ 1for all ['x, f3].

Proof Clearly f cannot coincide with a function of Ani on any intervaL
Assume now that frt C(uo ,... , lin I)' Then there exists, by Lemma 3.5, an
interval [xo , Po] such that

~fJ 0

I j P ll[c\.u, J:!o] w dx 0.
,Jet!)

In view of the orthogonality conditions, we thus have

• 0-:0
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However, the pattern of sign changes taken together with the "moment
conditions" (2.7) imply that f - T,:_l([ex, ,8];/) belongs to the dual cone
C*(uo , , Un-I) (see [4], p. 409) on [exo , ,80]' Since P,,[exo ,,80] evidently belongs
to C(uo , , Un-I)' (3.8) is impossible.

CONCLUSION

Letfbelong to C[a, b]. Then the following statements are equivalent:

(a) E~_l([ex, ,8];/) > En2([iX, ,8];/). for all [iX, ,8], a (X < ,8 b.

(b) Either for -fbelongs to C(uo ,... , U n _ 1 )\L1 n _ 1 for all such [x, ,8].

(c) Either a/([ex, ,8];/) > 0 for all such [iX, ,8], or an
2([ex, ,8];/) < 0

for all such [ex, ,8].

(d) f - T;'_l([ex, ,8];/) has exactly 11 sign changes on [ex,,8] for all such
[C1:, ,8].
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